Comparative analysis of classical machine learning and deep learning techniques for predicting benign-malignant breast cancer

Authors

  • Anak Agung Ngurah Gunawan, I Gede Susrama, I Wayan Supardi, Putu Astri Novianti, Anak Agung Ngurah Frady Cakra Negara, Anak Agung Ngurah Bagaskara, Kadek Melani Aditya

Keywords:

machine learning; deep learning; benign; malignant; breast cancer

Abstract

Classical machine learning methods and deep learning techniques have been widely used for early detection of breast cancer. We do not know which method is best used to classify benign-malignant breast cancer. Therefore, the purpose of this research is to compare classical machine learning and deep learning techniques. The method we use to compare classical machine learning and deep learning techniques is first we take secondary data from the results of digital mammography X-ray photos, then we cropping with a size of 2 cm. then we count 90 features on mammography, 90 features are used as input variables from machine learning. For the CNN method we use 2 types of image sizes, namely full image and 2 cm cropping image, then we calculate the True Positive (TP), False Positive (FP), False Negative (FN), True Negative (TN), accuracy, sensitivity, specificity, precision, TPR and FPR values. Then the value is compared with existing machine learning algorithms such as Random Forest, Naïve Bayes, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), Support Vector Machine (SVM). The results obtained by Deep learning techniques with CNN cropping 2 cm algorithm has the best performance, accuracy, sensitivity, specificity, highest precision and lowest false positive and false negative compared to other methods such as Random Forest, Naïve Bayes, Decision Tree, KNN, ANN, SVM, CNN full image. Conclusion Deep learning techniques with CNN cropping 2 cm algorithm is best used to predict benign-malignant breast cancer.

Downloads

Download data is not yet available.

References

S. Fazeli, M. Sakala, R. Rakow-Penner, and H. Ojeda-Fournier, “Cancer in pregnancy: breast cancer,” Abdom. Radiol., vol. 48, no. 5, pp. 1645–1662, 2023, doi: 10.1007/s00261-023-03824-1.

H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021, doi: 10.3322/caac.21660.

A. Sassi et al., “Breast density and the likelihood of malignant MRI-detected lesions in women diagnosed with breast cancer,” Eur. Radiol., vol. 33, no. 11, pp. 8080–8088, 2023, doi: 10.1007/s00330-023-10072-w.

N. Qian et al., “Breast cancer diagnosis from contrast-enhanced mammography using multi-feature fusion neural network,” Eur. Radiol., vol. 34, no. 2, pp. 917–927, 2024, doi: 10.1007/s00330-023-10170-9.

R. L. Siegel, A. N. Giaquinto, and A. Jemal, “Cancer statistics, 2024.,” CA. Cancer J. Clin., no. October 2023, pp. 12–49, 2024, doi: 10.3322/caac.21820.

E. Elías-Cabot, S. Romero-Martín, J. L. Raya-Povedano, A. K. Brehl, and M. Álvarez-Benito, “Impact of real-life use of artificial intelligence as support for human reading in a population-based breast cancer screening program with mammography and tomosynthesis,” Eur. Radiol., 2023, doi: 10.1007/s00330-023-10426-4.

C. Chen et al., “Spatiotemporal analysis of contrast-enhanced ultrasound for differentiating between malignant and benign breast lesions,” Eur. Radiol., 2023, doi: 10.1007/s00330-023-10500-x.

C. Pulido-Carmona et al., “Interval cancer in the Córdoba Breast Tomosynthesis Screening Trial (CBTST): comparison of digital breast tomosynthesis plus digital mammography to digital mammography alone,” Eur. Radiol., 2024, doi: 10.1007/s00330-023-10546-x.

J. Camps-Herrero, R. Pijnappel, and C. Balleyguier, “MR-contrast enhanced mammography (CEM) for follow-up of breast cancer patients: a ‘pros and cons’ debate,” Eur. Radiol., 2024, doi: 10.1007/s00330-024-10684-w.

Y. Amitai et al., “The diagnostic performance of ultrafast MRI to differentiate benign from malignant breast lesions: a systematic review and meta-analysis,” Eur. Radiol., 2024, doi: 10.1007/s00330-024-10690-y.

M. Marcon, M. H. Fuchsjäger, P. Clauser, and R. M. Mann, “ESR Essentials : screening for breast cancer - general recommendations by EUSOBI,” 2024, doi: 10.1007/s00330-024-10740-5.

T. Hoon et al., “Quantitative assessment of breast volume changes after whole ‑ breast irradiation for breast cancer using breast auto ‑ segmentation,” Breast Cancer Res. Treat., vol. 203, no. 2, pp. 205–214, 2024, doi: 10.1007/s10549-023-07146-0.

K. Kubota et al., “Investigation of imaging features in contrast-enhanced magnetic resonance imaging of benign and malignant breast lesions,” Jpn. J. Radiol., vol. 42, no. 7, pp. 720–730, 2024, doi: 10.1007/s11604-024-01551-1.

A. Özdemir, M. Güven, S. Binici, S. Uygur, and O. Toktaş, “Impact of 18F ‑ FDG PET / CT in the management decisions of breast cancer board on early ‑ stage breast cancer,” Clin. Transl. Oncol., vol. 26, no. 5, pp. 1139–1146, 2024, doi: 10.1007/s12094-023-03331-1.

B. G. Deepa and S. Senthil, “Predicting invasive ductal carcinoma tissues in whole slide images of breast Cancer by using convolutional neural network model and multiple classifiers,” Multimed. Tools Appl., vol. 81, no. 6, pp. 8575–8596, Mar. 2022, doi: 10.1007/s11042-022-12114-9.

H. M. Ammar, A. F. Tammam, I. M. Selim, and M. Eassa, “Automated system utilizing non-invasive technique mammograms for breast cancer detection,” BMC Med. Imaging, vol. 24, no. 1, pp. 1–9, 2024, doi: 10.1186/s12880-024-01363-9.

V. Kumar, B. K. Mishra, M. Mazzara, D. N. H. Thanh, and A. Verma, “Prediction of Malignant and Benign Breast Cancer: A Data Mining Approach in Healthcare Applications,” Lect. Notes Data Eng. Commun. Technol., vol. 37, no. February, pp. 435–442, 2020, doi: 10.1007/978-981-15-0978-0_43.

M. Selvam, A. Chandrasekharan, A. Sadanandan, V. K. Anand, A. Murali, and G. Krishnamurthi, “Radiomics as a non-invasive adjunct to Chest CT in distinguishing benign and malignant lung nodules,” Sci. Rep., vol. 13, no. 1, pp. 1–14, 2023, doi: 10.1038/s41598-023-46391-7.

F. Prinzi, A. Orlando, S. Gaglio, and S. Vitabile, “Interpretable Radiomic Signature for Breast Microcalcification Detection and Classification,” J. Imaging Informatics Med., no. 0123456789, 2024, doi: 10.1007/s10278-024-01012-1.

A. Yang et al., “A risk scoring system based on tumor microenvironment cells to predict prognosis and immune activity in triple-negative breast cancer,” Breast Cancer, vol. 29, no. 3, pp. 468–477, 2022, doi: 10.1007/s12282-021-01326-w.

Q. Wang et al., “Multi-modality radiomics model predicts axillary lymph node metastasis of breast cancer using MRI and mammography,” Eur. Radiol., 2024, doi: 10.1007/s00330-024-10638-2.

M. O. Adebiyi, M. O. Arowolo, M. D. Mshelia, and O. O. Olugbara, “A Linear Discriminant Analysis and Classification Model for Breast Cancer Diagnosis,” Appl. Sci., vol. 12, no. 22, 2022, doi: 10.3390/app122211455.

Y. Amethiya, P. Pipariya, S. Patel, and M. Shah, “Comparative analysis of breast cancer detection using machine learning and biosensors,” Intelligent Medicine, vol. 2, no. 2. Elsevier B.V., pp. 69–81, May 01, 2022. doi: 10.1016/j.imed.2021.08.004.

J. Lin, Y. Li, X. Lin, and C. Che, “Fusion of laser-induced breakdown spectroscopy technology and deep learning: a new method to identify malignant and benign lung tumors with high accuracy,” Anal. Bioanal. Chem., vol. 416, no. 4, pp. 993–1000, 2024, doi: 10.1007/s00216-023-05089-5.

D. Shanthi, S. Shinde, P. N. Renjith, S. S. Nath, P. Thilakavathy, and V. Suneetha, “A study of deep learning techniques for predicting breast cancer types,” Soft Comput., vol. 2, 2023, doi: 10.1007/s00500-023-08245-2.

A. Al Bataineh, “A comparative analysis of nonlinear machine learning algorithms for breast cancer detection,” Int. J. Mach. Learn. Comput., vol. 9, no. 3, pp. 248–254, 2019, doi: 10.18178/ijmlc.2019.9.3.794.

A. Zabian and A. Z. Ibrahim, “Karnauph classifier for predicting breast cancer based on morphological features,” Int. J. Inf. Technol., vol. 16, no. 1, pp. 353–359, 2024, doi: 10.1007/s41870-023-01607-x.

J. Wu and C. Hicks, “Breast cancer type classification using machine learning,” J. Pers. Med., vol. 11, no. 2, 2021, doi: 10.3390/jpm11020061.

A. A. N. Gunawan et al., “Digital Mammography Data Transformation Model to Improve the Accuracy of Benign and Malignant Detection in Breast Cancer,” Int. J. Intell. Syst. Appl. Eng., vol. 12, no. 1, pp. 647–665, 2024.

V. P. C. Magboo and M. S. Magboo, “Machine learning classifiers on breast cancer recurrences,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 2742–2752. doi: 10.1016/j.procs.2021.09.044.

I. Handayani, “IJISCS | 1 COMPARISON OF K-NEAREST NEIGHBOR AND NAÏVE BAYES FOR BREAST CANCER CLASSIFICATION USING PYTHON.”

R. Fusco et al., “Blood oxygenation level dependent magnetic resonance imaging and diffusion weighted MRI imaging for benign and malignant breast cancer discrimination,” Magn. Reson. Imaging, vol. 75, pp. 51–59, Jan. 2021, doi: 10.1016/j.mri.2020.10.008.

Z. M. Sarvestani, J. Jamali, M. Taghizadeh, and M. H. F. Dindarloo, “A novel machine learning approach on texture analysis for automatic breast microcalcification diagnosis classification of mammogram images,” J. Cancer Res. Clin. Oncol., vol. 149, no. 9, pp. 6151–6170, 2023, doi: 10.1007/s00432-023-04571-y.

Z. Jam, A. Albadvi, and A. Atashi, Deep learning application in diagnosing breast cancer recurrence, no. 0123456789. Springer US, 2024. doi: 10.1007/s11042-024-19423-1.

T. A. Assegie, “An optimized K-Nearest neighbor based breast cancer detection,” J. Robot. Control, vol. 2, no. 3, pp. 115–118, May 2021, doi: 10.18196/jrc.2363.

Y. Eroğlu, M. Yildirim, and A. Çinar, “Convolutional Neural Networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mRMR,” Comput. Biol. Med., vol. 133, Jun. 2021, doi: 10.1016/j.compbiomed.2021.104407.

B. N. Prathibha, N.-M. Prof, and V. Sadasivam, “Breast Tissue Characterization using Variants of Nearest Neighbour Classifier in Multi Texture Domain,” 2010.

A. P. Dhawan, Y. Chitre, C. Kaiser-Bonasso, M. Moskowitz, ) Y Chitre, and C. Kaiser-Bonasso, “Analysis of Mammographic Microcalcifications Using Gray-Level Image Structure Features,” 1996.

Z. Mushtaq, A. Yaqub, S. Sani, and A. Khalid, “Effective K-nearest neighbor classifications for Wisconsin breast cancer data sets,” J. Chinese Inst. Eng. Trans. Chinese Inst. Eng. A, vol. 43, no. 1, pp. 80–92, 2020, doi: 10.1080/02533839.2019.1676658.

S. Rahman and M. Ahmed, “KNN for Breast Cancer Prediction utilizing Wisconsin Cancer Dataset,” 1901.

S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1D convolutional neural networks and applications: A survey,” Mech. Syst. Signal Process., vol. 151, 2021, doi: 10.1016/j.ymssp.2020.107398.

C. Prasetyo, A. Kardiana, and R. Yuliwulandari, “Breast Cancer Diagnosis using Artificial Neural Networks with Extreme Learning Techniques,” Int. J. Adv. Res. Artif. Intell., vol. 3, no. 7, pp. 10–14, 2014, doi: 10.14569/ijarai.2014.030703.

I. AlShourbaji, P. Kachare, W. Zogaan, L. J. Muhammad, and L. Abualigah, “Learning Features Using an optimized Artificial Neural Network for Breast Cancer Diagnosis,” SN Comput. Sci., vol. 3, no. 3, pp. 1–8, 2022, doi: 10.1007/s42979-022-01129-6.

D. C. Edwards, M. A. Kupinski, R. Nagel, R. M. Nishikawa, and J. Papaioannou, “Using a Bayesian Neural Network to Optimally Eliminate False-Positive Microcalcification Detections in a CAD Scheme.”

W. C. Shia and D. R. Chen, “Classification of malignant tumors in breast ultrasound using a pretrained deep residual network model and support vector machine,” Comput. Med. Imaging Graph., vol. 87, Jan. 2021, doi: 10.1016/j.compmedimag.2020.101829.

M. Li, L. Zhu, G. Zhou, J. He, Y. Jiang, and Y. Chen, “Predicting the pathological status of mammographic microcalcifications through a radiomics approach,” Intell. Med., vol. 1, no. 3, pp. 95–103, Sep. 2021, doi: 10.1016/j.imed.2021.05.003.

C. Yanhua, Y. Li, J. Zhu, and J. Dong, “Prediction of benign and malignant breast masses using digital mammograms texture features,” Ann. Oncol., vol. 30, no. October, p. v581, 2019, doi: 10.1093/annonc/mdz257.026.

B. A. Akinnuwesi, B. O. Macaulay, and B. S. Aribisala, “Breast cancer risk assessment and early diagnosis using Principal Component Analysis and support vector machine techniques,” Informatics Med. Unlocked, vol. 21, Jan. 2020, doi: 10.1016/j.imu.2020.100459.

K. Gupta and N. Chawla, “Analysis of Histopathological Images for Prediction of Breast Cancer Using Traditional Classifiers with Pre-Trained CNN,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 878–889. doi: 10.1016/j.procs.2020.03.427.

R. Resmini, L. Faria da Silva, P. R. T. Medeiros, A. S. Araujo, D. C. Muchaluat-Saade, and A. Conci, “A hybrid methodology for breast screening and cancer diagnosis using thermography,” Comput. Biol. Med., vol. 135, Aug. 2021, doi: 10.1016/j.compbiomed.2021.104553.

M. Mehmood et al., “Machine learning enabled early detection of breast cancer by structural analysis of mammograms,” Comput. Mater. Contin., vol. 67, no. 1, 2021, doi: 10.32604/cmc.2021.013774.

M. A. A. Albadr, F. T. AL-Dhief, L. Man, A. Arram, A. H. Abbas, and R. Z. Homod, “Online sequential extreme learning machine approach for breast cancer diagnosis,” Neural Comput. Appl., vol. 0123456789, 2024, doi: 10.1007/s00521-024-09617-x.

S. H. Abdulla, A. M. Sagheer, and H. Veisi, “Breast cancer segmentation using K-means clustering and optimized region-growing technique,” Bull. Electr. Eng. Informatics, vol. 11, no. 1, pp. 158–167, 2022, doi: 10.11591/eei.v11i1.3458.

N. Thakur, P. Kumar, and A. Kumar, A systematic review of machine and deep learning techniques for the identification and classification of breast cancer through medical image modalities, vol. 83, no. 12. Springer US, 2024. doi: 10.1007/s11042-023-16634-w.

B. Xiao et al., “Classification of microcalcification clusters in digital breast tomosynthesis using ensemble convolutional neural network,” Biomed. Eng. Online, vol. 20, no. 1, pp. 1–20, 2021, doi: 10.1186/s12938-021-00908-1.

S. Chaudhury, K. Sau, M. A. Khan, and M. Shabaz, “Deep transfer learning for IDC breast cancer detection using fast AI technique and Sqeezenet architecture,” Mathematical Biosciences and Engineering, vol. 20, no. 6. American Institute of Mathematical Sciences, pp. 10404–10427, 2023. doi: 10.3934/mbe.2023457.

O. Thaalbi and M. A. Akhloufi, “Deep learning for breast cancer diagnosis from histopathological images: classification and gene expression: review,” Netw. Model. Anal. Heal. Informatics Bioinforma., vol. 13, no. 1, 2024, doi: 10.1007/s13721-024-00489-8.

T. SenthilPrakash, G. Kannan, S. Prabhakaran, and B. P. Prajapati, “Deep convolutional spiking neural network fostered automatic detection and classification of breast cancer from mammography images,” Res. Biomed. Eng., vol. 39, no. 4, pp. 833–841, 2023, doi: 10.1007/s42600-023-00306-7.

K. Suvarna Vani et al., “Detection and Classiication of Invasive Ductal Carcinoma using Artiicial Intelligence Detection and Classification of Invasive Ductal Carcinoma using Artificial Intelligence,” 2022, doi: 10.21203/rs.3.rs-2069384/v1.

S. R. Sannasi Chakravarthy, N. Bharanidharan, V. Vinoth Kumar, T. R. Mahesh, M. S. Alqahtani, and S. Guluwadi, “Deep transfer learning with fuzzy ensemble approach for the early detection of breast cancer,” BMC Med. Imaging, vol. 24, no. 1, pp. 1–15, 2024, doi: 10.1186/s12880-024-01267-8.

M. Abdolahi, M. Salehi, I. Shokatian, and R. Reiazi, “Artificial intelligence in automatic classification of invasive ductal carcinoma breast cancer in digital pathology images,” Med. J. Islam. Repub. Iran, Oct. 2020, doi: 10.47176/mjiri.34.140.

J. P. K. C. Kunta and V. A. Lepakshi, “Enhancing Breast Cancer Detection Through a Tailored Convolutional Neural Network Deep Learning Approach,” SN Comput. Sci., vol. 5, no. 7, 2024, doi: 10.1007/s42979-024-03197-2.

A. Agung, N. Gunawan, I. Suhariningsih, K. S. P. Triyono, and B. Widodo, “Determination of Physical Parameter Model for the Photo Film Mammographic X-Ray Results on the Breast Cancer Histology Classification,” 2012.

A. A. N. Gunawan, S. Poniman, and I. W. Supardi, “Classification of breast cancer grades using physical parameters and K-nearest neighbor method,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 17, no. 2, pp. 637–644, Apr. 2019, doi: 10.12928/TELKOMNIKA.V17I2.9797.

K. Singh, S. Shastri, S. Kumar, and V. Mansotra, “BC-Net : Early Diagnostics of Breast Cancer Using Nested Ensemble Technique of Machine Learning,” vol. 57, no. 6, pp. 646–659, 2023, doi: 10.3103/S0146411623060093.

T. A. Taymour, W. Mohamed, Y. Hamdy, and E. Hinnawy, “Can ultrasound shear wave elastography differentiate between malignant and benign pleural effusions ?,” Egypt. J. Radiol. Nucl. Med., 2024, doi: 10.1186/s43055-024-01209-y.

N. Li, W. Liu, Y. Zhan, Y. Bi, X. Wu, and M. Peng, “Value of S ‑ Detect combined with multimodal ultrasound in differentiating malignant from benign breast masses,” 2024, doi: 10.1186/s43055-023-01183-x.

E. Badawy, R. Elnaggar, S. Abdulatif, M. Soliman, and D. S. Elmesidy, “Performance of AI ‑ aided mammography in breast cancer diagnosis : Does breast density,” Egypt. J. Radiol. Nucl. Med., 2023, doi: 10.1186/s43055-023-01129-3.

A. Mohammed, H. Zahran, R. A. Maarouf, A. Hussein, and A. S. Sheha, “The role of diffusion ‑ weighted MR imaging in discrimination between benign and malignant axillary lymph nodes in breast cancer patients,” Egypt. J. Radiol. Nucl. Med., 2022, doi: 10.1186/s43055-022-00801-4.

J. Kadadevarmath and A. P. Reddy, “Improved Watershed Segmentation and DualNet Deep Learning Classifiers for Breast Cancer Classification,” SN Comput. Sci., 2024, doi: 10.1007/s42979-024-02642-6.

P. Mürtz et al., “Simplified intravoxel incoherent motion DWI for differentiating malignant from benign breast lesions,” Eur. Radiol. Exp., vol. 6, 2022, doi: 10.1186/s41747-022-00298-6.

S. Kayikci and T. M. Khoshgoftaar, “Breast cancer prediction using gated attentive multimodal deep learning,” J. Big Data, 2023, doi: 10.1186/s40537-023-00749-w.

A. Alloqmani, Y. B. Abushark, and A. Irshad, “Anomaly Detection of Breast Cancer Using Deep Learning,” Arab. J. Sci. Eng., vol. 48, no. 8, pp. 10977–11002, 2023, doi: 10.1007/s13369-023-07945-z.

D. Zuo, L. Yang, Y. Jin, H. Qi, Y. Liu, and L. Ren, “Machine learning-based models for the prediction of breast cancer recurrence risk,” pp. 1–14, 2023.

N. Li et al., “Value of inversion imaging to diagnosis in differentiating malignant from benign breast masses,” pp. 1–9, 2023, doi: 10.1186/s12880-023-01164-6.

M. M. Srikantamurthy, V. P. S. Rallabandi, D. B. Dudekula, S. Natarajan, and J. Park, “Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN ‑ LSTM based transfer learning,” BMC Med. Imaging, pp. 1–15, 2023, doi: 10.1186/s12880-023-00964-0.

A. Al, N. Johir, R. Abdullah, and A. Mamun, “Breast cancer classification along with feature prioritization using machine learning algorithms,” Health Technol. (Berl)., pp. 1061–1069, 2022, doi: 10.1007/s12553-022-00710-6.

S. Sara, K. L. Jani, A. Malathy, and J. Vinayakumar, “Breast cancer image analysis using deep learning techniques – a survey,” Health Technol. (Berl)., pp. 1133–1155, 2022, doi: 10.1007/s12553-022-00703-5.

Downloads

Published

19.10.2025

How to Cite

Anak Agung Ngurah Gunawan. (2025). Comparative analysis of classical machine learning and deep learning techniques for predicting benign-malignant breast cancer. International Journal of Intelligent Systems and Applications in Engineering, 13(1), 598–609. Retrieved from https://mail.ijisae.org/index.php/IJISAE/article/view/7969

Issue

Section

Research Article